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Abstract. Motivated by the fact that important real-life problems, such as the protein dock-
ing problem, can be accurately modeled by minimizing a nonconvex piecewise-quadratic
function, a nonconvex underestimator is constructed as the minimum of a finite number of
strictly convex quadratic functions. The nonconvex underestimator is generated by minimiz-
ing a linear function on a reverse convex region and utilizes sample points from a given
complex function to be minimized. The global solution of the piecewise-quadratic underes-
timator is known exactly and gives an approximation to the global minimum of the original
function. Successive shrinking of the initial search region to which this procedure is applied
leads to fairly accurate estimates, within 0.0060%, of the global minima of synthetic non-
convex functions for which the global minima are known. Furthermore, this process can
approximate a nonconvex protein docking function global minimum within four-figure rel-
ative accuracy in six refinement steps. This is less than half the number of refinement steps
required by previous models such as the convex kernel underestimator (Mangasarian et al.,
Computational Optimization and Applications, to appear) and produces higher accuracy
here.

Key words: nonconvex minimization, piecewise-quadratic underestimation, protein dock-
ing, reverse-convex regions

1. Introduction

Our principal concern in this work is the global unconstrained minimiza-
tion of a nonconvex function with multiple local minima. Such NP-hard
problems occur in real-life problems such as protein docking [5]. Although
there is no guaranteed finite method that can solve this problem in reason-
able time, interesting effective approaches for attacking this problem have
been recently proposed that obtain a global solution for a number of syn-
thetic problems with multiple minima. In [2, 6, 9] the nonconvex func-
tion is successively bounded below by a strictly convex quadratic function
whose minimum gives improved estimates of the global minimum of the
nonconvex function. In [4] the nonconvex function is underestimated by a
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piecewise linear function and in [3] by a convex kernel function [1, 10, 11]
and a global solution of the underestimator is found. All these methods,
though effective in their own way, do not take advantage of the important
fact that the original nonconvex function is very closely modeled by a non-
convex function which itself is the minimum of a finite number of convex
functions. The global minimum of this latter nonconvex function is easily
computed as the least of the minima of the convex functions constituting
it. It is precisely this approach that we shall utilize in this paper which will
lead to an approximate global solution in a finite number of steps.

We outline the contents of the paper now. In Section 2 we formulate
our problem as that of obtaining a close underestimator that is the min-
imum of a finite number of strictly convex piecewise-quadratic functions.
In Section 3 we state our algorithm which consists of minimizing a lin-
ear function on a polyhedral reverse convex region and establish its termi-
nation in a finite number of steps at a stationary point. In Section 4 we
give results for numerical testing of our algorithm on various sized noncon-
vex synthetic test problems including a model for a protein docking prob-
lem. In all instances tested, the global minimum value was attained within
0.0060%. Section 5 concludes the paper.

A word about our notation and background material follows. All vec-
tors will be column vectors unless transposed to a row vector by a prime
superscript ′. The scalar (inner) product of two vectors x and y in the n-
dimensional real space Rn will be denoted by x ′y. Superscripts will typi-
cally denote instances of matrices, vectors or scalars such as Hi, ci or αi .
A column vector of ones of arbitrary dimension will be denoted by e, while
the identity matrix of arbitrary dimension will be denoted by I . For a con-
cave function f : Rn → R the supergradient ∂f (x) of f at x is a vector in
Rn satisfying

f (y)−f (x)� ∂f (x)(y −x) (1)

for any y ∈ Rn. The set D(f (x)) of supergradients of f at the point x is
nonemepty, convex, compact and reduces to the ordinary gradient ∇f (x),
when f is differentiable at x [7, 8]. The notation := will denote a defini-
tion of a term on the left of the symbol and =: will denote a definition of
a term on the right of the symbol, while arg minS c′s will denote the set of
minimizers of c′s in the set S.

2. Piecewise-Quadratic Underestimation

The problem we are interested in is to find the global minimum of a func-
tion f : Rn −→ R, given m function evaluations of f (x), that is:

yj =f (xj ), j =1, . . . ,m. (2)
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In [9] a strictly convex quadratic underestimate:

q(α, c,H, x)=α + c′x + 1
2
x ′Hx, H symmetric positive definite (3)

is first obtained by solving the mathematical program:

min
α,c,H

m∑

j=1

(yj −q(α, c,H ;xj ))

s.t. q(α, c,H ;xj )�yj , j =1, . . . ,m,

H symmetric positive definite,

(4)

where α ∈R, c ∈Rn and H ∈Rn×n, and then minimizing q(α, c,H ;x) over
x ∈Rn.

Our proposed approach is to replace the strictly convex quadratic, pos-
sibly inaccurate, underestimator (3) by the much more accurate nonconvex
function which is the minimum of � strictly convex quadratic functions:

q(p;x) := min
1�i��

αi + ci ′x + 1
2
x ′Hix, H i symmetric positive definite, (5)

where, for simplicity, p represents the variables (αi, ci,H i) as follows:

pi :=
⎡

⎣
αi

ci

H i

⎤

⎦ , i =1, . . . , �, p :=

⎡

⎢⎣
p1

...

p�

⎤

⎥⎦ . (6)

Our approximation for an underestimator of f (x) is obtained by solving
the following maximization problem.

max
p

m∑

j=1

(
min

1�i��
αi + ci ′xj + 1

2
xj ′

Hixj

)

s.t. yj � min
1�i��

(αi + ci ′xj + 1
2
xj ′

Hixj ), j =1, . . . ,m, (7)

which can be rewritten in the following equivalent form:

max
(p,γ )

m∑

j=1

γj

s.t. min
1�i��

(αi + ci ′xj + 1
2xj ′

Hixj )−yj �0, j =1, . . . ,m,

γj −αi − ci ′xj − 1
2xj ′

Hixj �0, i =1, . . . , �, j =1, . . . ,m,

γj −yj �0, j =1, . . . ,m.

(8)
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We note that in this reformulation of (7), the last constraint of the reformu-
lation (8) is completely redundant. However, it is added in order to gener-
ate a convex polyhedral set containing our nonconvex feasible region when
the first set of constraints of (8) are dropped. We also note note that the
nonconvexity of the feasible region is caused by the “reverse convex” first
set of constraints of (8), each component of which generates a feasible
region whose complement is convex, as depicted in Figure 1 which utilizes
the following notation. By defining:

s :=
[
p

γ

]
=

⎡

⎢⎢⎢⎣

p

γ1
...

γm

⎤

⎥⎥⎥⎦ (9)

our optimization problem (8) can be written as follows.

max
s∈S

ds

s.t. h(s)�0,
(10)

where d := [0
e

]
, h(s) and S, a convex polyhedral set, are defined as follows.

hj (s) := min
1�i��

(αi + ci ′xj + 1
2
xj ′

Hixj )−yj , j =1, . . . ,m,

S :=
{
s

∣∣∣∣

[
γj −αi − ci ′xj − 1

2xj ′
Hixj

γj −yj

]

�0, i =1, . . . , �, j =1, . . . ,m

}
. (11)

We note that the nonconvexity in the minimization problem (10) is caused
by the reverse convex constraint h(s)�0 while the set S is a convex poly-
hedral set (see Figure1). We turn now to our algorithmic part of the paper.

3. The Successive Linearization Algorithm

The basic idea of the algorithm is to first find a solution ŝ of the lin-
ear program maxs∈S d ′s and then to solve a succession of linear programs
whose feasible regions are generated by adding to the polyhedral constraint
s ∈S appropriate supporting planes to the complement of the reverse con-
vex set {s | hj (s) � 0} for some j . The concavity of hj (s) ensures that the
resulting polyhedral set is contained in the original feasible region of (10):

T :={s |h(s)�0, s ∈S}. (12)
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Figure 1. The crosshatched reverse convex feasible region T (12) of the optimization problem
(10) consisting of the intersection of the polyhedral set S with the reverse convex sets gener-
ated by h(s)�0.

Before stating our algorithm it is convenient to define the active linear
parts hji(s) of the constraint hj (s) � 0 for j = 1, . . . ,m at the point s as
follows.

hj (s) := min
1�i��

(αi + ci ′xj + 1
2
xj ′

Hixj )−yj ,

= (αi + ci ′xj + 1
2
xj ′

Hixj )−yj , i ∈ I (j)⊂{1, . . . , �}
=:hji(s), i ∈ I (j)⊂{1, . . . , �}. (13)

We now state our algorithm.

ALGORITHM 1. Feasible Successive Linearization Algorithm (FSLA).
Let ŝ be a solution of the linear program maxs∈S d ′s and let s0 ∈T . Having
sk determine sk+1 ∈T as follows.
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(i) Let ŝk = sk +λk(ŝ − sk) where:

λk := min
1�j�m

(
arg min

0�λ�1
{λ |hj (s

k +λ(ŝ − sk))=0}
)

(14)

and let the active set of constraints at ŝk be defined as:

J (ŝk) :=arg min
1�j�m

(
arg min

0�λ�1
{λ |hj (s

k +λ(ŝ − sk))=0}
)

. (15)

Note : ŝk ∈T .
(ii)

sk+1 ∈ arg min
s∈S

⎧
⎨

⎩d ′s

∣∣∣∣∣∣

hj (ŝ
k)+ ∂hj (ŝ

k)(s − ŝk) � 0, j ∈J (ŝk)∑

i∈I (j)

hji(s) � 0, j /∈J (ŝk)

⎫
⎬

⎭ . (16)

Note: sk+1 ∈ T because of the concavity of h(s) and the fact that the
second set of constraints of (16) are supergradients of the concave con-
straints hj (s) � 0, j /∈ J (ŝk). Note also that hj (ŝ

k) = 0 for j ∈ J (ŝk) in
(16).

(iii) Stop if sk+1 = ŝk. Else k +1→k and go to (i).
Note: d ′sk �d ′ŝk �d ′sk+1 �d ′ŝk+1.
Hence, the nondecreasing bounded above sequences {d ′sk} and {d ′ŝk} con-
verge provided the feasible region T is bounded.

We state now our finite termination result for our FSLA Algorithm at a
KKT point of our original problem (10).

PROPOSITION 2. Finite Termination of FSLA Algorithm. Under the non-
degeneracy assumption that each ŝk lies on a nonrepeating unique intersection
of the boundary planes of the feasible region T (12), the sequence {ŝk} termi-
nates at a KKT point of the original problem (10).

Proof. At ŝk the solution sk+1 satisfies the following KKT conditions with
multipliers u and v, where we have assumed that the polyhedral region S

is defined by:

S :={s |As �b} (17)

for some A and b:
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Figure 2. Iterates of Algorithm 1 for a simple example. The crosshatched area constitutes the
feasible region of problem (16) for the first iteration (ii), that is k =0.

d +
∑

j∈J (ŝk)

vj ∂hj (ŝ
k)+

∑

j /∈J (ŝk),i∈I (j)

vj∇hji(s
k+1)+A′u=0

0�vj · ∂hj (ŝ
k)(sk+1 − ŝk)�0, j ∈J (ŝk),

0�vj ·
∑

i∈I (j)

hji(s
k+1)�0, j /∈J (ŝk),

0�u · (Ask+1 −b)�0.

(18)

The dot denotes a scalar product in the last condition above. Since there is
a finite number of unique intersections of boundary planes, the sequence
{ŝk} must terminate. But, the only way for {ŝk} to terminate is that ŝk =
sk+1. However in that case the KKT conditions (18) degenerate to the
KKT conditions of the original problem (10).

Figure 2 depicts the various iterates of the algorithm and its termination
in this very simple case at a global solution.

We note that the nondegeneracy assumption required for the proof of
Proposition 2 is rather strong, but was satisfied most of the time in our
numerical tests. In the few occasions when it was violated, our algorithm
did terminate at a local minimum.

We turn now to our numerical results.
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Figure 3. The function (20) with k1 =1000 and k2 =0.1 on R2 and its approximation using the
minimum of �=9 strictly convex quadratic functions.

4. Numerical Testing

In our numerical implementation, we enforced the requirement of (5) that
each Hi be symmetric positive definite by requiring that each Hi be strictly
diagonally dominant as follows. We let L be a lower triangular matrix, set
Hi =L+L′ and imposed the constraint:

Lii �0.1+
∑

j<i

|Lij |+
∑

j>i

|Lji |. (19)

In our testing, we found that the success of Algorithm 1 in producing an
accurate approximation of the original function was significantly dependent
on the initial feasible approximation, s0. Hence, we divided the given data
points (2) into � randomly chosen, possibly overlapping, subsets each con-
sisting of 2 + n + n2 points. We then fit a quadratic to each subset using
Algorithm 1 with �=1 with a trivial initial approximation. Each quadratic
formed a piece of our initial approximation for the original problem, and
was shifted down if need be in order to maintain feasibility. That is, the
piecewise-quadratic function consisting of the minimum of the � quadratic
functions lay on or below the given m function values yj , j = 1, . . . ,m.
Table I shows a sequence of objective values for a given sk starting with
s0 generated in the above manner.

To produce our numerical results, we used a refinement process similar to
the one used in [3, 4] to reduce the size of the search region while searching
for an approximate minima. In it, we approximate the function based on m

points uniformly distributed across the search space. We then re-center our
search space around the approximated minimum and reduce the size of the
search space in each dimension by a specified refinement rate. For example,
a refinement rate of 0.25 produces a search space with edges that are 25%
of the length of those of the search space of the previous iteration.
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Table I. Results from using Algorithm 1 on a synthetic test problem from (20) in R with k1 =1000,
k2 =0.1 using m=7 initial points and �=6 pieces. The actual solution is a minimum value of −1000
at x =0. Note that solving max

s∈S
d ′s gives an upper bound of d ′ ŝ =−3443.25.

Iteration k 0 1 2 3 4

d ′sk −10354.02 −3444.66 −3444.28 −3443.28 −3443.28
d ′ŝk −3601.05 −3444.66 −3444.28 −3443.28 −3443.28
minx q(pk;x) −1986.406 −999.999 −999.963 −1000.000 −1000.00
arg minx q(pk;x) 0.036 −0.007 0.003 0.001 0.001
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Figure 4. Selected iterations from the refinement process of Algorithm 1 using the minimum of
the minima of three strictly convex quadratic functions, that is �= 3, to find the global mini-
mum of the one-dimensional function defined by (20) with constants k1 =500 and k2 =0.1. Our
dashed-line approximation underestimates the given solid-line function (20) values at m given
points at each iteration.

Using this process, we tested Algorithm 1 on six nonconvex functions on
Rn with n=1, . . . ,6 defined as follows.

y(x)= 1
2
‖x‖2 −k1 cos(k2e

′x), k1, k2 ∈R. (20)

Note that this function attains a minimum value of −k1 at x =0. Figure 3
shows an example of this function in R2 and an approximation of it using
the minimum of � = 9 strictly convex quadratic functions. Figure 4 shows
some sample iterates of the refinement process of Algorithm 1 on the func-
tion (20) on R.

We also tested the algorithm using six nonconvex piecewise-quadratic
functions on Rn with n=1, . . . ,6 defined as follows.

y(x)= min
j∈{1,... ,r}

gj (x), (21)
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where gj (x), j = 1, . . . , r are arbitrary strictly convex quadratic functions,
such as:

gj (x)=βj + zj ′
x + 1

2
x ′(0.5I +Mj ′

Mj)x, j =1, . . . , r, (22)

Here, βj ∈R, zj ∈Rn and Mj ∈Rn×n are randomly chosen. In our testing,
we used r =5. An exact global minimum solution of (21) can be computed
as described in [4, Section 4, Proposition 1].

We also tested our algorithm on a synthetic protein docking (SPD) prob-
lem generated from real docking data [5, 6]. For the SPD problem, we
used the model (21) with r = 5 and (0.5I + Mj ′

Mj) replaced by a ran-
dom diagonal matrix Dj ∈R6 with element values between 0.6 and 140. We
then computed βj and zj such that each gj (x) is a strictly convex qua-
dratic function with a pre-determined minimum solution corresponding to
actual local minima of the docking problem energy function [5]. That is,
given local minima at xj with minimum value vj , set zj =−Djxj and βj =
vj − 1

2zj ′
xj . Results of these tests are presented in Table II for the function

of (20) and in Table III for the piecewise-quadratic function of (21) includ-
ing the SPD problem.

It should be noted that we do not use any information about the func-
tions (20) and (21) except their values at m points, selected to be under-
estimated by the piecewise-quadratic underestimating functions (11). This
corresponds to the situation in real docking problems. Typically, in com-
puter models of the docking energy surface (for which we want to locate
the global minimum) it is only possible to compute the value f (xj ) (2) of
the energy surface at specified xj , j =1, . . . ,m, where xj represents a possi-
ble conformation of a protein-ligand docked pair [5]. Each such value gen-
erally requires a significant amount of computation.

We make the following observations regarding our numerical results:

Table II. Results from Algorithm 1 on six synthetic test problems in Rn from (20) with k1 =500, k2 =
0.1. The true minimum value is −500, attained at 0.

n 1 2 3 4 5 6
m 4 16 64 81 243 729

Refinement rate 0.25 0.25 0.25 0.25 0.25 0.25
Iterate tolerance 0.001 0.01 0.01 0.1 0.1 0.1
� 9 9 5 4 3 3
Computed min −500.00 −500.00 −500.00 −500.02 −500.02 −500.03
%Error in min 0.0000% 0.0000% 0.0000% −0.0036% −0.0046% −0.0059%
Error in soln (1-norm) 0.0001 0.0000 0.0062 0.0582 0.0442 0.0791
No. refinements 3 5 9 14 11 13
Time (s) 3.65 8.24 38.37 57.99 143.51 4842.12
Time per refinement 1.22 1.65 4.26 4.14 13.05 372.47
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(i) The percent error in the minimum value for all examples including
the real-world simulation of the protein docking SPD problem was no
more than 0.0060%

(ii) The percent 1-norm error in the solution vector for all the synthetic
problems of Table III including the SPD problem was no more than
0.0790%.

(iii) The times for the six-dimensional problems were no more than two
and a half hours. Since this is the largest dimensional fixed dock-
ing problem in previous work [2, 5, 6] that needs to be handled, our
method can reasonably accommodate these problems. In order to han-
dle larger dimensional problems in Rn, one could use m randomly
generated points of the order n3, for example.

(iv) The time, error rates, and number of refinements on the synthetic
problems of Table III were better than those of [4] for problems in R2

and greater, including the SPD problem.
(v) The error rates and number of refinements on the problems of

Table III were better than those of the linear-quadratic kernel of [3].
Also, the number of refinements were fewer than those of the Gauss-
ian kernel of [3], with comparable error rates. The improvement in
the number of refinements reflect the fact that Algorithm 1 produces
a closer approximation of the original function than the the method
of [3]. This is important when actual data is difficult to obtain, and
we would like to limit the total number of sample points used. For
instance, the SPD problem required 11664 points using the algorithm
from [3] with a Gaussian kernel, but only 4374 using Algorithm 1 of
this paper. A comparison of the error rates and number of refinements
for these different methods can be found in Table IV.
Similar to previous work [4, 3], our computations were performed on
machines utilizing an 800 Mhz Pentium III processor and 256 MB of
memory running Tao Linux 1.0, with MATLAB 7.0 installed.

Table IV. Comparison of Piecewise-Quadratic, Convex Kernel [3], and Piecewise-Linear Underestima-
tion [4] on the SPD Problem in R6. All algorithms used 729 sample points per refinement step.

Underestimator %Error in Soln (1-Norm) %Error in Min No. Refinements

Piecewise-Quadratic 0.0000% 0.0000% 6
Gaussian Kernel 0.0085% 0.0000% 16
Quadratic Kernel 0.7767% 0.9290% 12
Piecewise-Linear 0.083% 0.014% 26
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5. Conclusion

We have proposed a method for finding an accurate estimate of the global
minimum of a nonconvex function by underestimating the function by a
nonconvex piecewise-quadratic function and then finding the easily com-
putable global minimum of the underestimator. The method gives accurate
estimates of the global minima for nonconvex functions with multiple min-
ima including a class of synthetic nonconvex functions that closely model
protein docking problems. An interesting problem for future consideration
is that of approximating nonconvex protein docking energy functions by
the minimum of a finite number of convex kernel functions instead of the
single convex kernel function used in [3]. This might provide a highly accu-
rate underestimator with an easily computable global minimum.

Acknowledgements

The research described in this Data Mining Institute Report 05-01, March
2005, was supported by National Science Foundation Grants CCR-0138308,
ITR-0082146, 051312, by the Microsoft Corporation and by ExxonMobil.

References

1. Cristianini, N. and Shawe-Taylor, J. (2000), An Introduction to Support Vector Machines,
Cambridge University Press, Cambridge, MA.

2. Dill, K.A., Phillips, A.T. and Rosen, J.B. (1997), CGU: An algorithm for molecular
structure prediction. In: Biegler, L. T. et al. (eds.), IMA Volumes in Mathematics and
its Applications: Large Scale Optimization with Applications III: Molecular Structure and
Optimization, pp. 1–22.

3. Mangasarian, O.L., Rosen, J.B. and Thompson, M.E. Convex kernel underestimation
of functions with multiple minima. Technical Report 04-02, Data Mining Institute,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, May
2004. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/04-02.ps. Computational Optimization and
Applications, to appear.

4. Mangasarian, O.L., Rosen, J.B. and Thompson, M.E. (2005), Global minimiza-
tion via piecewise-linear underestimation, Journal of Global Optimization, 32, 1–9.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/03-03.ps.

5. Mitchell, J.C., Phillips, A.T., Rosen J.B. and Ten Eyck, L.F. (2000), Coupled optimi-
zation in protein docking. In: Optimization in Computational Chemistry and Molecular
Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 191–207.

6. Phillips, A.T., Rosen, J.B. and Dill K.A. (2001), Convex global underestimation for
molecular structure prediction. In: Pardalos, P.M. et al.(eds.), From Local to Global Opti-
mization, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1–18.

7. Polyak, B.T. (1987), Introduction to Optimization, Optimization Software, Inc., Publica-
tions Division, New York.

8. Rockafellar. R.T. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.



488 O.L. MANGASARIAN ET AL.

9. Rosen, J.B. and Marcia, R.F. (2004), Convex quadratic approximation. Computational
Optimization and Applications, 28, 173–184.

10. Schölkopf, B. and Smola, A. (2002), Learning with Kernels, MIT Press, Cambridge, MA.
11. Vapnik, V.N. (2000), The Nature of Statistical Learning Theory, second edition, Springer,

New York.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


